International conference Reducing air pollution from ships in the Mediterranean Sea Madrid, March 18th, 2019

Impact of maritime transport emissions on coastal air quality in Europe

Mar Viana Institute of Environmental Assessment and Water Research mar.viana@idaea.csic.es

1. Impact of international shipping on European air quality

- Tracers and physico-chemical characteristics
- Impact on ambient PM and on gaseous pollutants
- 2. Mitigation strategies:
 - Environmental and health benefits from ECAs: case study
- 3. Conclusions

Rationale

Emissions from the marine transport sector contribute **significantly** to air pollution globally

Increasing emission source:

- Globalization of manufacturing processes
- Increase of global-scale trade
- Relatively, large efforts to reduce other sources (industrial, power generation, etc.)
- More future growth expected

Human health

Climate

Ecosystems

How much of a problem?

Different approaches used in different countries
Not yet achieved the goals for protecting human health

Chemical tracers

Well-known **tracers** of combustion based on crude oil:

- V and Ni (>60 publications)
- Others: La, Th, Pb, Zn and SO_4^{2-} (>18 publications)

Where?	PMx	V/Ni	Reference	Where?	PMx	Tracer	Value	Reference
Italy	PM ₁₀	3.2±0.8	Mazzei et al. (2008)	Spain	PM ₁₀	V/EC	<2	Viana et al. (2009)
παιγ	г IVI ₁₀	3.2±0.0	wazzei et al. (2000)		PM _{2.5}	V/EC	<2	Viana et al. (2009)
	PM _{2.5}	3.2±0.8	Mazzei et al. (2008)	Spain	PM ₁₀	La/Ce	0.6-0.8	Pandolfi et al. (2011)
	PM_{10}	3.2±0.8	Mazzei et al. (2008)		PM _{2.5}	La/Ce	0.6-0.8	Pandolfi et al. (2011)
Ship engine	10	2.3-4.5	Agrawal et al. (2008)	Italy	PM ₁₀	soluble V	80%	Becagli et al. (2012)
			. . ,		PM_{10}	soluble V	>6 ng/m³	Becagli et al. (2012)
Spain	PM _{2.5}	4-5	Viana et al. (2009)		PM_{10}	soluble Ni	80%	Becagli et al. (2012)
	PM ₁₀	4-5	Viana et al. (2009)		PM_{10}	non-ss SO ₄ ²-/V	200-400	Becagli et al. (2012)
Spain	PM ₁₀	3	Pandolfi et al. (2011)					
	PM _{2.5}	3	Pandolfi et al. (2011)					
Europe	PM ₁₀	3-4	Viana et al. (2014)	Tracers are available, BUT: changing fuels result in changing tracers				
Europe	PM _{2.5}	3-4	Viana et al. (2014)					
Europe	PM ₁₀	2.3-2.5	Alastuey et al. (2016)					

Andersson et al. (2009); Hammingh et al. (2012); Tian et al. (2013); Lang et al. (2017)

Contributions to gases (NO, NO₂, SO₂) > PM, N

Hotelling: contribution to $SO_2 < NO \& NO_2$ due to low-S fuels at berth

Contribution to NO >> NO₂ and provoked local-scale depletion of O_3

Merico et al. (2016)

Mitigation strategies

IMO (UN), MARPOL, SECAs, NECAs

EU Directive 2005/33/EC on sulphur emissions from ships

Technological measures:

- low sulphur fuels
- sulphur scrubbers
- NOx mitigation measures
- liquid natural gas (LNG)
- slow steaming
- soot particle filters...

Mitigation strategies

Directive 2005/33/EC:

- SO₂ concentrations in 3 out of 4 harbours decreased (>2010)
- No decrease was observed in Tunis
- Average decrease SO₂ = 66% (daily)
- No significant changes for NOx & BC

Schembari et al. (2012)

Case study: ECA in the Marmara Sea

Environmental benefits

Health benefits

	RO					
		East domain (90% confidence intervals)				
Health outcome	Scenario	PM ₁₀	PM _{2.5}	SO ₂		
Hospital admission	ns Baseline	13,000	18,000	1,200		
for respiratory	(total burden)	(4,900 to 20,000)	(6,800 to 20,000)	(-830 to 3,200)		
diseases	Policy scenario	150	330	180		
(ICD-10 J00-J99)	(number avoided)	(57 to 230)	(125 to 370)	(-108 to 460)		
	% Change	-1%	-2%	-14%		
Hospital admission	ns Baseline (total burden)	4,300 (770 to 7,800)	6,000 (1,900 to 9,700)	1,700 (770 to 2,500)		
for circulatory system diseases	Policy scenario (number avoided)	45 (8.1 to 82)	97 (30 to 160)	190 (90 to 290)		
(ICD-10 I00-I90)	% Change	-1%	-2%	-12%		
	Deselies	400	070	47		
All-cause mortality (ICD-10 A00-R99)	Baseline (total burden)	120 (50 to 190)	670 (140 to 1,000)	17 (15 to 19)		
(ICD-10 A00-K33)	Policy scenario	1	13	2		
	(number avoided)	(0.4 to 1.6)	(2.7 to 19)	(1.7 to 2.2)		
	% Change	-1%	-2%	-10%		

Viana et al. (2015)

Figure 45 Reduction in PM2.5 mortality (premature deaths) - overall ECAMED domain

Conclusions & knowledge gaps

- What we know:
 - Nr. studies not large, but increasing
 - Contribution to PMx: 1-20% PMx, with large spatial variability
- What we don't know (so well):
 - Is it more efficient to reduce primary or secondary emissions?
 - Impact of harbour operations & how to mitigate them
- Mitigation strategies:
 - Efficient: 50-66% SO₂ reduction, and 2^{ary} PM
- Environmental and health benefits:
 - Effective reduction of ship-sourced SO₂ (46% to 5%, Istanbul)
 - Effective health benefits (12-14% decreased hospital admissions due to SO₂ and 10% reduced mortality due to SO₂, Istanbul)
 - Similar results for Mediterranean ECA

European Topic Centre on Air Pollution and Climate Change Mitigation

CREAL⁹ centre de recerca en epidemiologia ambiental

Thank you for your attention

mar.viana@idaea.csic.es

